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Abstract

The theory of graph games with ω-regular winning conditions is the foundation for modeling
and synthesizing reactive processes. In the case of stochastic reactive processes, the corre-
sponding stochastic graph games have three players, two of them (System and Environment)
behaving adversarially, and the third (Uncertainty) behaving probabilistically. We consider two
problems for stochastic graph games: the qualitative problem asks for the set of states from
which a player can win with probability 1 (almost-sure winning); and the quantitative problem
asks for the maximal probability of winning (optimal winning) from each state. We consider
ω-regular winning conditions formalized as Müller winning conditions. We present optimal
memory bounds for pure (deterministic) almost-sure winning and optimal winning strategies
in stochastic graph games with Müller winning conditions. We also present improved memory
bounds for randomized almost-sure winning and optimal strategies. We study the complexity of
stochastic Müller games and show that the quantitative analysis problem is PSPACE-complete.
Our results are relevant in synthesis of stochastic reactive processes.
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1 Introduction

A stochastic graph game [6] is played on a directed graph with three kinds of states: player-1,
player-2, and probabilistic states. At player-1 states, player 1 chooses a successor state; at player-2
states, player 2 chooses a successor state; and at probabilistic states, a successor state is chosen
according to a given probability distribution. The result of playing the game forever is an infinite
path through the graph. If there are no probabilistic states, we refer to the game as a 2-player
graph game; otherwise, as a 21/2-player graph game. There has been a long history of using 2-player
graph games for modeling and synthesizing reactive processes [1, 21, 23]: a reactive system and its
environment represent the two players, whose states and transitions are specified by the states and
edges of a game graph. Consequently, 21/2-player graph games provide the theoretical foundation
for modeling and synthesizing processes that are both reactive and stochastic [13, 22].

For the modeling and synthesis (or “control”) of reactive processes, one traditionally considers
ω-regular winning conditions, which naturally express the temporal specifications and fairness as-
sumptions of transition systems [17]. This paper focuses on 21/2-player graph games with respect to
an important normal form of ω-regular winning conditions; namely Müller winning conditions [24].

In the case of 2-player graph games, where no randomization is involved, a fundamental determi-
nacy result of Gurevich and Harrington [14] based on LAR (latest appearance record) construction
ensures that, given an ω-regular winning condition, at each state, either player 1 has a strategy
to ensure that the condition holds, or player 2 has a strategy to ensure that the condition does
not hold. Thus, the problem of solving 2-player graph games consists in finding the set of winning
states, from which player 1 can ensure that the condition holds. Along with the computation of
the winning states, the characterization of complexity of winning strategies is a central question,
since the winning strategies represent the implementation of the controller in the synthesis prob-
lem. The elegant algorithm of Zielonka [25] uses the LAR construction to compute winning sets
in 2-player graph games with Müller conditions. In [10] the authors present an insightful analysis
of Zielonka’s algorithm to present optimal memory bounds (matching upper and lower bound) for
winning strategies in 2-player graph games with Müller conditions.

In the case of 21/2-player graph games, where randomization is present in the transition struc-
ture, the notion of winning needs to be clarified. Player 1 is said to win surely if she has a strategy
that guarantees to achieve the winning condition against all player-2 strategies. While this is the
classical notion of winning in the 2-player case, it is less meaningful in the presence of probabilistic
states, because it makes all probabilistic choices adversarial (it treats them analogously to player-2
choices). To adequately treat probabilistic choice, we consider the probability with which player 1
can ensure that the winning condition is met. We thus define two solution problems for 21/2-player
graph games: the qualitative problem asks for the set of states from which player 1 can ensure
winning with probability 1; the quantitative problem asks for the maximal probability with which
player 1 can ensure winning from each state (this probability is called the value of the game at
a state). Correspondingly, we define almost-sure winning strategies, which enable player 1 to win
with probability 1 whenever possible, and optimal strategies, which enable player 1 to win with
maximal probability. The main result of this paper is an optimal memory bound for pure (deter-
ministic) almost-sure and optimal strategies in 21/2-player graph games with Müller conditions. In
fact we generalize the elegant analysis of [10] to present an upper bound for optimal strategies for
21/2-player graph games with Müller conditions that matches the lower bound for sure winning in
2-player games. As a consequence we generalize several results known for 21/2-player graph games:
such as existence of pure memoryless optimal strategies for parity conditions [5, 26, 19] and Rabin
conditions [4]. We present the result for almost-sure strategies in Section 3; and then generalize it
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to optimal strategies in Section 4. The results developed also help us to precisely characterize the
complexity of several classes of 21/2-player Müller games. We show that the complexity of quantita-
tive analysis of 21/2-player games with Müller objectives is PSPACE complete. We also show that
for two special classes of Müller objectives (namely, union-closed and upward-closed objectives) the
problem is coNP-complete. We also study the memory bounds for randomized strategies. In case
of randomized strategies we improve the upper bound for almost-sure and optimal strategies as
compared to pure strategies (Section 5). The problem of a matching upper and lower bound for
almost-sure and optimal randomized strategies remains open.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based probabilistic games
(21/2-player games), two-player turn-based deterministic games (2-player games), and Markov de-
cision processes (11/2-player games).

Notation. For a finite set A, a probability distribution on A is a function δ : A → [0, 1] such that∑
a∈A δ(a) = 1. We denote the set of probability distributions on A by D(A). Given a distribution

δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support of δ.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph) G =
((S,E), (S1, S2, S©), δ) consists of a directed graph (S,E), a partition (S1, S2, S©) of the finite
set S of states, and a probabilistic transition function δ: S© → D(S), where D(S) denotes the set
of probability distributions over the state space S. The states in S1 are the player-1 states, where
player 1 decides the successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the successor state is
chosen according to the probabilistic transition function δ. We assume that for s ∈ S© and t ∈ S,
we have (s, t) ∈ E iff δ(s)(t) > 0, and we often write δ(s, t) for δ(s)(t). For technical convenience
we assume that every state in the graph (S,E) has at least one outgoing edge. For a state s ∈ S,
we write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors. The size of a game
graph G = ((S,E), (S1, S2, S©), δ) is

|G| = |S| + |E| +
∑

t∈S

∑

s∈S©

|δ(s)(t)|;

where |δ(s)(t)| denotes the space to represent the transition probability δ(s)(t) in binary.
A set U ⊆ S of states is called δ-closed if for every probabilistic state u ∈ U ∩S©, if (u, t) ∈ E,

then t ∈ U . The set U is called δ-live if for every nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there
is a state t ∈ U such that (s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph
of G, indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the special case of the
21/2-player game graphs with S© = ∅. The Markov decision processes (11/2-player game graphs)
are the special case of the 21/2-player game graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs
with S2 = ∅ as player-1 MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or play, of the game graph G is an infinite sequence
ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ∈ N. We write Ω for the set of all
plays, and for a state s ∈ S, we write Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗ ·S1 → D(S) that assigns a probability distribution to
all finite sequences ~w ∈ S∗ ·S1 of states ending in a player-1 state (the sequence represents a prefix
of a play). Player 1 follows the strategy σ if in each player-1 move, given that the current history
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of the game is ~w ∈ S∗ · S1, she chooses the next state according to the probability distribution
σ(~w). A strategy must prescribe only available moves, i.e., for all ~w ∈ S∗, and s ∈ S1 we have
Supp(σ(~w · s)) ⊆ E(s). The strategies for player 2 are defined analogously. We denote by Σ and Π
the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two players are fixed,
the outcome of the game is a random walk ωσ,π

s for which the probabilities of events are uniquely
defined, where an event A ⊆ Ω is a measurable set of paths. Given strategies σ for player 1 and π
for player 2, a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three conditions
hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then σ(s0, s1, . . . , sk)(sk+1) > 0; and
(3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0. Given two strategies σ ∈ Σ and π ∈ Π, and a
state s ∈ S, we denote by Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given
strategies σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A) for the probability
that a path belongs to A if the game starts from the state s and the players follow the strategies
σ and π, respectively. In the context of player-1 MDPs we often omit the argument π, because Π
is a singleton set.

We classify strategies according to their use of randomization and memory. The strategies that
do not use randomization are called pure. A player-1 strategy σ is pure if for all ~w ∈ S∗ and s ∈ S1,
there is a state t ∈ S such that σ(~w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies
for player 1. A strategy that is not necessarily pure is called randomized. Let M be a set called
memory, that is, M is a set of memory elements. A player-1 strategy σ can be described as a pair
of functions σ = (σu, σm): a memory-update function σu: S × M → M and a next-move function σm:
S1 × M → D(S). We can think of strategies with memory as input/output automaton computing
the strategies (see [10] for details). The strategy (σu, σm) is finite-memory if the memory M is
finite, and then we denote the size of the memory of the strategy σ by the size of its memory M,
i.e., |M|. We denote by ΣF the set of finite-memory strategies for player 1, and by ΣPF the set of
pure finite-memory strategies; that is, ΣPF = ΣP ∩ ΣF . The strategy (σu, σm) is memoryless if
|M| = 1; that is, the next move does not depend on the history of the play but only on the current
state. A memoryless player-1 strategy can be represented as a function σ: S1 → D(S). A pure
memoryless strategy is a pure strategy that is memoryless. A pure memoryless strategy for player 1
can be represented as a function σ: S1 → S. We denote by ΣM the set of memoryless strategies for
player 1, and by ΣPM the set of pure memoryless strategies; that is, ΣPM = ΣP ∩ΣM . Analogously
we define the corresponding strategy families ΠP , ΠF , ΠPF , ΠM , and ΠPM for player 2.

Given a finite-memory strategy σ ∈ ΣF , let Gσ be the game graph obtained from G under the
constraint that player 1 follows the strategy σ. The corresponding definition Gπ for a player-2
strategy π ∈ ΠF is analogous, and we write Gσ,π for the game graph obtained from G if both
players follow the finite-memory strategies σ and π, respectively. Observe that given a 21/2-player
game graph G and a finite-memory player-1 strategy σ, the result Gσ is a player-2 MDP. Similarly,
for a player-1 MDP G and a finite-memory player-1 strategy σ, the result Gσ is a Markov chain.
Hence, if G is a 21/2-player game graph and the two players follow finite-memory strategies σ and π,
the result Gσ,π is a Markov chain. These observations will be useful in the analysis of 21/2-player
games.

Objectives. An objective for a player consists of an ω-regular set of winning plays Φ ⊆ Ω [24]. In
this paper we study zero-sum games [13, 22], where the objectives of the two players are complemen-
tary; that is, if the objective of one player is Φ, then the objective of the other player is Φ = Ω \Φ.
We consider ω-regular objectives specified as Müller objectives. For a play ω = 〈s0, s1, s2, . . .〉, let
Inf(ω) be the set { s ∈ S | s = sk for infinitely many k ≥ 0 } of states that appear infinitely often
in ω. We use colors to define objectives as in [10]. A 21/2-player game (G,C, χ,F ⊆ P(C)) consists
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of a 21/2-player game graph G, a finite set C of colors, a partial function χ : S ⇀ C that assigns
colors to some states, and a winning condition specified by a subset F of the power set P(C) of
colors. The winning condition defines subset Φ ⊆ Ω of winning plays, defined as follows:

Müller(F) = { ω ∈ Ω | χ(Inf(ω)) ∈ F }

that is the set of paths ω such that the colors appearing infinitely often in ω is in F .

Remarks. A winning condition F ⊆ P(C) has a split if there are sets C1, C2 ∈ F such that
C1 ∪C2 6∈ F . A winning condition is a Rabin winning condition if it do not have splits, and it is a
Streett winning condition if P(C) \ F does not have a split. This notions coincide with the Rabin
and Streett winning conditions usually defined in the literature (see [20, 10] for details). We now
define the reachability, safety, Büchi and coBüchi objectives that will be useful in our proofs.

• Reachability and safety objectives. Given a set T ⊆ S of “target” states, the reachability
objective requires that some state of T be visited. The set of winning plays is thus Reach(T ) =
{ ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }. Given a set F ⊆ S, the safety objective
requires that only states of F be visited. Thus, the set of winning plays is Safe(F ) = { ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ F for all k ≥ 0 }.

• Büchi and coBüchi objectives. Given a set B ⊆ S of “Büchi” states, the Büchi objective
requires that B is visited infinitely often. Formally, the set of winning plays is Büchi(B) =
{ ω ∈ Ω | Inf(ω) ∩ B 6= ∅ }. Given C ⊆ S, the coBüchi objective requires that all states
visited infinitely often are in C. Formally, the set of winning plays is coBüchi(C) = {ω ∈ Ω |
Inf(ω) ⊆ C }.

Sure, almost-sure, positive winning and optimality. Given a player-1 objective Φ, a strategy
σ ∈ Σ is sure winning for player 1 from a state s ∈ S if for every strategy π ∈ Π for player 2, we
have Outcome(s, σ, π) ⊆ Φ. A strategy σ is almost-sure winning for player 1 from the state s for the
objective Φ if for every player-2 strategy π, we have Prσ,π

s (Φ) = 1. A strategy σ is positive winning
for player 1 from the state s for the objective Φ if for every player-2 strategy π, we have Prσ,π

s (Φ) > 0.
The sure, almost-sure and positive winning strategies for player 2 are defined analogously. Given
an objective Φ, the sure winning set 〈〈1〉〉sure (Φ) for player 1 is the set of states from which player 1
has a sure winning strategy. Similarly, the almost-sure winning set 〈〈1〉〉almost (Φ) and the positive
winning set 〈〈1〉〉pos (Φ) for player 1 is the set of states from which player 1 has an almost-sure
winning and a positive winning strategy, respectively. The sure winning set 〈〈2〉〉sure (Ω \ Φ), the
almost-sure winning set 〈〈2〉〉almost (Ω \ Φ) and the positive winning set 〈〈2〉〉pos (Ω \ Φ) for player 2
are defined analogously. It follows from the definitions that for all 21/2-player game graphs and all
objectives Φ, we have 〈〈1〉〉sure (Φ) ⊆ 〈〈1〉〉almost (Φ) ⊆ 〈〈1〉〉pos (Φ). Computing sure, almost-sure and
positive winning sets and strategies is referred to as the qualitative analysis of 21/2-player games
[11].

Given ω-regular objectives Φ ⊆ Ω for player 1 and Ω\Φ for player 2, we define the value functions
〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as the following functions from the state
space S to the interval [0, 1] of reals: for all states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ)
and 〈〈2〉〉val (Ω\Φ)(s) = supπ∈Π infσ∈Σ Prσ,π

s (Ω\Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s, and analogously
for player 2. The strategies that achieve the value are called optimal: a strategy σ for player 1
is optimal from the state s for the objective Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The optimal
strategies for player 2 are defined analogously. Computing values and optimal strategies is referred

4



to as the quantitative analysis of 21/2-player games. The set of states with value 1 is called the
limit-sure winning set [11]. For 21/2-player game graphs with ω-regular objectives the almost-sure
and limit-sure winning sets coincide [4].

Let C ∈ {P,M,F,PM ,PF} and consider the family ΣC ⊆ Σ of special strategies for player 1.
We say that the family ΣC suffices with respect to a player-1 objective Φ on a class G of game
graphs for sure winning if for every game graph G ∈ G and state s ∈ 〈〈1〉〉sure (Φ), there is a player-
1 strategy σ ∈ ΣC such that for every player-2 strategy π ∈ Π, we have Outcome(s, σ, π) ⊆ Φ.
Similarly, the family ΣC suffices with respect to the objective Φ on the class G of game graphs for
(a) almost-sure winning if for every game graph G ∈ G and state s ∈ 〈〈1〉〉almost (Φ), there is a player-
1 strategy σ ∈ ΣC such that for every player-2 strategy π ∈ Π, we have Prσ,π

s (Φ) = 1; (b) positive
winning if for every game graph G ∈ G and state s ∈ 〈〈1〉〉pos (Φ), there is a player-1 strategy
σ ∈ ΣC such that for every player-2 strategy π ∈ Π, we have Prσ,π

s (Φ) > 0; and (c) optimality
if for every game graph G ∈ G and state s ∈ S, there is a player-1 strategy σ ∈ ΣC such that
〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The notion of sufficiency for size of finite-memory strategies is
obtained by referring to the size of the memory M of the strategies. The notions of sufficiency of
strategies for player 2 is defined analogously.

Determinacy. For sure winning, the 11/2-player and 21/2-player games coincide with 2-player
(deterministic) games where the random player (who chooses the successor at the probabilistic
states) is interpreted as an adversary, i.e., as player 2. Theorem 1 and Theorem 2 state the
classical determinacy results for 2-player and 21/2-player game graphs with Müller objectives. It
follows from Theorem 2 that for all Müller objectives Φ, for all ε > 0, there exists an ε-optimal
strategy σε for player 1 such that for all π and all s ∈ S we have Prσ,π

s (Φ) ≥ 〈〈1〉〉val (Φ)(s) − ε.

Theorem 1 (Qualitative determinacy [14]) For all 2-player game graphs and Müller objectives
Φ, we have 〈〈1〉〉sure (Φ) ∩ 〈〈2〉〉sure (Ω \ Φ) = ∅ and 〈〈1〉〉sure (Φ) ∪ 〈〈2〉〉sure (Ω \ Φ) = S. Moreover, on
2-player game graphs, the family of pure finite-memory strategies suffices for sure winning with
respect to Müller objectives.

Theorem 2 (Quantitative determinacy [18]) For all 21/2-player game graphs, for all Müller
winning conditions F ⊆ P(C), and all states s, we have 〈〈1〉〉val (Müller(F))(s) + 〈〈2〉〉val (Ω \
Müller(F))(s) = 1.

3 Optimal Memory Bound for Pure Qualitative Winning Strate-

gies

In this section we present optimal memory bounds for pure strategies with respect to qualitative
(almost-sure and positive) winning for 21/2-player game graphs with Müller winning conditions. The
result is obtained by a generalization of the result of [10] and depends on the novel constructions
of Zielonka [25] for 2-player games. In [10] the authors use an insightful analysis of Zielonka’s
construction to present an upper bound (and also a matching lower bound) on memory of sure
winning strategies in 2-player games with Müller objectives. In this section we generalize the result
of [10] to show that the same upper bound holds for qualitative winning strategies in 21/2-player
games with Müller objectives. We now introduce some notations and the Zielonka tree of a Müller
condition.

Notation. Let F ⊆ P(C) be a winning condition. For D ⊆ C we define (F � D) ⊆ P(D) as the
set { D′ ∈ F | D′ ⊆ D }. For a Müller condition F ⊆ P(C) we denote by F the complementary
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condition, i.e., F = P(C) \ F . Similarly for an objective Φ we denote by Φ the complementary
objective, i.e., Φ = Ω \ Φ.

Definition 1 (Zielonka tree of a winning condition [25]) The Zielonka tree of a winning
condition F ⊆ P(C), denoted ZF ,C , is defined inductively as follows:

1. If C 6∈ F , then ZF ,C = ZF ,C , where F = P(C) \ F .

2. If C ∈ F , then the root of ZF ,C is labeled with C. Let C0, C1, . . . , Ck−1 be all the maximal
sets in { X 6∈ F | X ⊆ C }. Then we attach to the root, as its subtrees, the Zielonka trees of
F � Ci, i.e., ZF�Ci,Ci

, for i = 0, 1, . . . , k − 1.

Hence the Zielonka tree is a tree with nodes labeled by sets of colors. A node of ZF ,C is a 0-level
node if it is labeled with a set from F , otherwise it is a 1-level node. In the sequel we write ZF to
denote ZF ,C if C is clear from the context.

Definition 2 (The number mF of Zielonka tree) Let F ⊆ P(C) be a winning condition and
ZF0,C0

,ZF1,C1
, . . . ,ZFk−1,Ck−1

be the subtrees attached to the root of the tree ZF ,C, where Fi = F �

Ci ⊆ P(Ci) for i = 0, 1, . . . , k − 1. We define the number mF inductively as follows

mF =





1 if ZF ,C does not have any subtrees,

max{ mF0,,mF1
, . . . ,mFk−1

} if C 6∈ F , (1-level node)
∑k−1

i=1 mFi
if C ∈ F , (0-level node).

Our goal is to show that for winning conditions F pure finite-memory qualitative winning
strategies of size mF exist in 21/2-player games. This proves the upper bound. The results of [10]
already established the matching lower bound for 2-player games. This establishes the optimal
bound of memory of qualitative winning strategies for 21/2-player games. We start with the key
notion of attractors that will be crucial in our proofs.

Definition 3 (Attractors) Given a 21/2-player game graph G and a set U ⊆ S of states, such
that G � U is a subgame, and T ⊆ S we define Attr1,©(T,U) as follows:

T0 = T ∩ U ; and for j ≥ 0 we define Tj+1 from Tj as

Tj+1 = Tj ∪ { s ∈ (S1 ∪ S©) ∩ U | E(s) ∩ Tj 6= ∅ } ∪ { s ∈ S2 ∩ U | E(s) ∩ U ⊆ Tj }.

and A = Attr1,©(T,U) =
⋃

j≥0 Tj . We obtain Attr2,©(T,U) by exchanging the roles of player 1 and

player 2. A pure memoryless attractor strategy σA : (A \ T ) ∩ S1 → S for player 1 on A to T is as
follows: for i > 0 and a state s ∈ (Ti \ Ti−1) ∩ S1, the strategy σA(s) ∈ Ti−1 chooses a successor in
Ti−1 (which exists by definition).

Lemma 1 (Attractor properties) Let G be a 21/2-player game graph and U ⊆ S be a set of
states such that G � U is a subgame. For a set T ⊆ S of states, let Z = Attr1,©(T,U). Then the
following assertions hold.

1. G � (U \ Z) is a subgame.

2. Let σZ be a pure memoryless attractor strategy for player 1. For all strategies π for player 2
in the subgame G � U and for all states s ∈ U we have
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(a) if Prσ
Z ,π

s (Reach(Z)) > 0, then PrσZ ,π
s (Reach(T )) > 0; and

(b) if Prσ
Z ,π

s (Büchi(Z)) > 0, then Prσ
Z ,π

s (Büchi(T ) | Büchi(Z)) = 1.

Proof. We prove the following cases.

1. Subgame property. For a state s ∈ U \Z, if s ∈ S1∪S©, then E(s)∩Z = ∅, (otherwise s would
have been in Z), i.e., E(s)∩U ⊆ U \Z. For a state s ∈ S2∩(U \Z) we have E(s)∩(U \Z) 6= ∅
(otherwise s would have been in Z). It follows that G � (U \ Z) is a subgame.

2. We now prove the two cases.

(a) Positive probability reachability. Let

δmin = min{ δ(s)(t) | s ∈ S©, t ∈ S, δ(s)(t) > 0 }.

Observe that δmin > 0. Let Z =
⋃

i≥0 Ti with T0 = T ; (as defined for attractors).

Consider a strategy σZ
1,© of both player 1 and the random player on Z as follows:

player 1 follows an attractor strategy σZ on Z to T and for s ∈ (Ti \ Ti−1) ∩ S©, the
random player chooses a successor t ∈ Ti−1. Such a successor exists by definition, and
observe that such a choice is made in the game with probability at least δmin. The
strategy σZ

1,© ensures that for all states s ∈ Z and for all strategies π for player 2 in
G � U , the set T ∩ U is reached with in |Z|-steps. Given player 1 follows an attractor

strategy σZ , the probability of the choice of σZ
1,© is at least δ

|Z|
min. It follows that a pure

memoryless attractor strategy σZ ensures that for all states s ∈ Z and for all strategies
π for player 2 in G � U we have

PrσZ ,π
s (Reach(T )) ≥ (δmin)|Z| > 0.

The desired result follows.

(b) Almost-sure Büchi property. Given a pure memoryless attractor strategy σZ , if the set
Z is visited `-times, then by the previous part we have that T is reached at least once
with probability 1 − (1 − |δmin|

|Z|)`, which goes to 1 as ` → ∞. Hence for all states

s and strategies π in G � U , given Prσ
Z ,π

s (Büchi(Z)) > 0, we have Prσ
Z ,π

s (Reach(T ) |
Büchi(Z)) = 1. Since given the event that Z is visited infinitely often (i.e., Büchi(Z))
the set T is reached with probability 1 from all states, it follows that the set T is visited
infinitely often with probability 1. Formally, for all states s and strategies π in G � U ,
given Prσ

Z ,π
s (Büchi(Z)) > 0, we have Prσ

Z ,π
s (Büchi(T ) | Büchi(Z)) = 1.

The result of the lemma follows.
Lemma 1 shows that the complement of an attractor is a subgame; and a pure memoryless

attractor strategy ensures that if the attractor of a set T is reached with positive probability, then
T is reached with positive probability, and given that the attractor of T is visited infinitely often,
then T is visited infinitely often with probability 1. We now present the main result of this section
(upper bound on memory for qualitative winning strategies). A matching lower bound follows from
the results of [10] for 2-player games (see Theorem 4).

Theorem 3 (Qualitative forgetful determinacy) Let (G,C, χ,F) be a 21/2-player game with
Müller winning condition F for player 1. Let Φ = Müller(F), and consider the following sets

W >0
1 = 〈〈1〉〉pos (Φ); W1 = 〈〈1〉〉almost (Φ);

W >0
2 = 〈〈2〉〉pos (Φ); W2 = 〈〈2〉〉almost (Φ).

The following assertions hold.
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1. We have (a) W >0
1 ∪W2 = S and W >0

1 ∩W2 = ∅; and (b) W >0
2 ∪W1 = S and W >0

2 ∩W1 = ∅.

2. (a) Player 1 has a pure strategy σ with memory of size mF such that for all states s ∈ W >0
1

and for all strategies π for player 2 we have Prσ,π
s (Φ) > 0; and (b) player 2 has a pure strategy

π with memory of size mF such that for all states s ∈ W2 and for all strategies σ for player 1
we have Prσ,π

s (Φ) = 1.

3. (a) Player 1 has a pure strategy σ with memory of size mF such that for all states s ∈ W1 and
for all strategies π for player 2 we have Prσ,π

s (Φ) = 1; and (b) player 2 has a pure strategy π
with memory of size mF such that for all states s ∈ W >0

2 and for all strategies σ for player 1
we have Prσ,π

s (Φ) > 0.

Proof. The first part of the result is a consequence of Theorem 2. We will concentrate on the
proof for the result for part 2. The last part (part 3) follows from a symmetric argument.

The proof goes by induction on the structure of the Zielonka tree ZF ,C of the winning condition
F . We assume that C 6∈ F . The case when C ∈ F can be proved by a similar argument: if C ∈ F ,
then we consider ĉ 6∈ C and consider the winning condition F̂ = F ⊆ P(C∪{ ĉ}) with C∪{ ĉ} 6∈ F̂ .
Hence we consider, without loss of generality, that C 6∈ F and let C0, C1, . . . , Ck−1 be the label of
the subtrees attached to the root C, i.e., C0, C1, . . . , Ck−1 are maximal subset of colors that appear
in F . We will define by induction a non-decreasing sequence of sets (Uj)j≥0 as follows. Let U0 = ∅
and for j > 0 we define Uj below:

1. Aj = Attr1,©(Uj−1, S) and Xj = S \ Aj;

2. Dj = C \ Cj mod k and Yj = Xj \ Attr2,©(χ−1(Dj),Xj);

3. let Zj be the set of positive winning states for player 1 in (G � Yj, Cj mod k, χ,F � Cj mod k),
(i.e., Zj = 〈〈1〉〉pos (Müller(F � Cj mod k)) in G � Yj); hence (Yj \ Zj) is almost-sure winning
for player 2 in the subgame; and

4. Uj = Aj ∪ Zj.

Fig 1 describes all these sets. The property of attractors and almost-sure winning states ensure
certain edges are forbidden between the sets. This is shown is Fig 2. We start with a few
observations of the construction.

1. Observation 1. For all s ∈ S2 ∩ Zj, we have E(s) ⊆ Zj ∪ Aj . This follows from the following
case analysis.

• Since Yj is a complement of an attractor set Attr2,©(χ−1(Dj),Xj), it follows that for all
states s ∈ S2 ∩ Yj we have E(s) ∩ Xj ⊆ Yj. It follows that E(s) ⊆ Yj ∪ Aj.

• Since player 2 can win almost-surely from the set Yj \ Zj , if a state s ∈ Yj ∩ S2 has an
edge to Yj \ Zj, then s ∈ Yj \ Zj. Hence for s ∈ S2 ∩ Zj we have E(s) ∩ (Yj \ Zj) = ∅.

2. Observation 2. For all s ∈ Xj ∩ (S1 ∪ S©) we have (a) E(s)∩Aj = ∅; else s would have been
in Aj ; and (b) if s ∈ Yj \ Zj , then E(s) ∩ Zj = ∅ (else s would have been in Zj).

3. Observation 3. For all s ∈ Yj ∩ S© we have E(s) ⊆ Yj.
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χ−1(Dj)
Uj−1

Xj

Zj

Yj Attr2,©(χ−1(Dj), Xj)Aj = Attr1,©(Uj−1, S)

Figure 1: The sets of the construction.

We will denote by Fi the winning condition F � Ci, for i = 0, 1, . . . , k− 1, and F i = P(Ci) \Fi.
By induction hypothesis on Fi = F � Cj mod k, player 1 has a pure positive winning strategy of
size mFi

from Zj and player 2 has a pure almost-sure winning strategy of size mFi
from Yj \ Zj .

Let W =
⋃

j≥0 Uj . We will show in Lemma 2 that player 1 has a pure positive winning strategy of
size mF from W ; and then in Lemma 3 we will show that player 2 has a pure almost-sure winning
strategy of size mF from S \ W . This completes the proof. We now prove the Lemmas 2 and 3.

Lemma 2 Player 1 has a pure positive winning strategy of size mF from the set W .

Proof. By induction hypothesis on j player 1 has a pure positive winning strategy σU
j−1 of size mF

from Uj−1. From the set Aj = Attr1,©(Uj−1, S), player 1 has a pure memoryless attractor strategy
σA

j to bring the game to Uj−1 with positive probability (Lemma 1(part 2.(a))), and then use σU
j−1

and ensure winning with positive probability from the set Aj . Let σZ
j be the pure positive winning

strategy for player 1 in Zj of size mFi
, where i = j mod k. We now show the combination of

strategies σU
j−1, σA

j and σZ
j ensure positive probability winning for player 1 from Uj . If the play

starts at a state s ∈ Zj, then player 1 follows σZ
j . If the play stays in Yj for ever, then the strategy

σZ
j ensures that player 1 wins with positive probability. By observation 1 of Theorem 3, for all

states s ∈ Yj ∩ S2, we have E(s) ⊆ Yj ∪ Aj . Hence if the play leaves Yj, then player 2 must chose
an edge to Aj . In Aj player 1 can use the attractor strategy σA

j followed by σU
j−1 to ensure positive

probability win. Hence if the play is in Yj for ever with probability 1, then σZ
j ensures positive

probability win, and if the play reaches Aj with positive probability, then σA
j followed by σU

j−1

ensures positive probability win.
We now formally present σU

j defined on Uj . Let σZ
j = (σZ

j,u, σZ
j,m) be the strategy obtained from

inductive hypothesis; defined on Zj (i.e., arbitrary elsewhere) of size mFi
, where i = j mod k, and

ensure winning with positive probability on Zj . Let σZ
j,u be the memory-update function and σZ

j,m

be the next-move function of σZ
j . We assume the memory MFi

of σZ
j to be the set {1, 2, . . . ,mFi

}.

The strategy σA
j : (Aj \ Uj−1) ∩ S1 → Aj is a pure memoryless attractor strategy on Aj to Uj−1.
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χ−1(Dj)
Uj−1

Xj

Zj

YjAj = Attr1,©(Uj−1, S) Attr2,©(χ−1(Dj), Xj)

Figure 2: The sets of the construction with forbidden edges.

The strategy σU
j is as follows: the memory-update function is

σU
j,u(s,m) =





σU
j−1,u(s,m) s ∈ Uj−1

σZ
j−1,u(s,m) s ∈ Zj ,m ∈ MFi

1 otherwise.

the next-move function is

σU
j,m(s,m) =





σU
j−1,m(s,m) s ∈ Uj−1 ∩ S1

σZ
j−1,m(s,m) s ∈ Zj ∩ S1,m ∈ MFi

σZ
j−1,m(s, 1) s ∈ Zj ∩ S1,m 6∈ MFi

σA
j (s) s ∈ (Aj \ Uj−1) ∩ S1.

The strategy σU
j formally defines the strategy we described and proves the result.

Lemma 3 Player 2 has a pure almost-sure winning strategy of size mF from the set S \ W .

Proof. Let ` ∈ N be such that ` mod k = 0 and W = U`−1 = U` = U`+1 = · · · = U`+k−1. From
the equality W = U`−1 = U` we have Attr1,©(W,S) = W . Let us denote by W = S \ W . Hence
G � W is a subgame (by Lemma 1), and also for all s ∈ W ∩ (S1 ∪ S©) we have E(s) ⊆ W . The
equality U`+i−1 = U`+i implies that Z`+i = ∅. Hence for all i = 0, 1, . . . , k − 1, we have Z`+i = ∅.
By inductive hypothesis for all i = 0, 1, . . . , k− 1, player 2 has a pure almost-sure winning strategy
πi of size mFi

in the game (G � Y`+i, Ci, χ,F � Ci).

We now describe the construction of a pure almost-sure winning strategy π∗ for player 2 in W .
For Di = C \Ci we denote by D̂i = χ−1(Di) the set of states with colors Di. If the play starts in a
state in Y`+i, for i = 0, 1, . . . , k − 1, then player 2 uses the almost-sure winning strategy πi. If the
play leaves Y`+i, then the play must reach W \ Y`+i = Attr2,©(D̂i,W ), since player 1 and random

states do not have edges to W . In Attr2,©(D̂i,W ), player 2 plays a pure memoryless attractor
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strategy to reach the set D̂i with positive probability. If the set D̂i is reached, then a state in
Y(`+i+1) mod k or in Attr2,©

(
D̂(i+1) mod k,W

)
is reached. If Y(`+i+1) mod k is reached π(i+1) mod k

is followed, and otherwise the pure memoryless attractor strategy to reach the set D̂(i+1) mod k

with positive probability is followed. Of course, the play may leave Y(`+i+1) mod k, and reach
Y(`+i+2) mod k, and then we would repeat the reasoning, and so on. Let us analyze various cases to
prove that π∗ is almost-sure winning for player 2.

1. If the play finally settles in some Y`+i, for i = 0, 1, . . . , k − 1, then from this moment player 2
follows πi and ensures that the objective Φ is satisfied with probability 1. Formally, for all
states s ∈ W , for all strategies σ for player 1 we have Prσ,π∗

s (Φ | coBüchi(Y`+i)) = 1. This
holds for all i = 0, 1, . . . , k − 1 and hence for all states s ∈ W , for all strategies σ for player 1
we have Prσ,π∗

s (Φ |
⋃

0≤i≤k−1 coBüchi(Y`+i)) = 1.

2. Otherwise, for all i = 0, 1, . . . , k − 1, the set W \ Y`+i = Attr2,©(D̂i,W ) is visited infinitely

often. By Lemma 1, given Attr2,©(D̂i,W ) is visited infinitely often, then the attractor strategy

ensures that the set D̂i is visited infinitely often with probability 1. Formally, for all states
s ∈ W , for all strategies σ for player 1, for all i = 0, 1, . . . , k − 1, we have Prσ,π∗

s (Büchi(D̂i) |
Büchi(W \ Y`+i)) = 1; and also Prσ,π∗

s (Büchi(D̂i) |
⋂

0≤i≤k−1 Büchi(W \ Y`+i)) = 1. It follows

that for all states s ∈ W , for all strategies σ for player 1 we have Prσ,π∗

s (
⋂

0≤i≤k−1 Büchi(D̂i) |⋂
0≤i≤k−1 Büchi(W \ Y`+i)) = 1. Hence the play visits states with colors not in Ci with

probability 1. Hence the set of colors visited infinitely often is not contained in any Ci. Since
C0, C1, . . . , Ck−1 are all the maximal subsets of F , we have the set of colors visited infinitely
often is not in F with probability 1, and hence player 2 wins almost-surely.

Hence it follows that for all strategies σ and for all states s ∈ (S \ W ) we have Prσ,π∗

s (Φ) = 1.
To complete the proof we present precise description of the strategy π∗ with memory of size mF .
Let πi = (πi

u, πi
m) be an almost-sure winning strategy for player 2 for the subgame on Y`+i with

memory MFi
. By definition we have mF =

∑k−1
i=0 mFi

. Let MF =
⋃k−1

i=0 (MF i
× { i }). This set is

not exactly the set { 1, 2, . . . ,mF }, but has the same cardinality (which suffices for our purpose).
We define the strategy π∗ as follows:

π∗
u(s, (m, i)) =

{
πi

u(s, (m, i)) s ∈ Y`+i

(1, i + 1 mod k) otherwise.

π∗
m(s, (m, i)) =





πi
m(s, (m, i)) s ∈ Y`+i

πLi(s) s ∈ Li \ D̂i

si s ∈ D̂i, si ∈ E(s) ∩ W.

where Li = Attr2,©(D̂i,W ); πLi is a pure memoryless attractor strategy on Li to D̂i, and si is a
successor state of s in W (such a state exists since W induces a subgame). This formally represents
π∗ and the size of π∗ satisfies the required bound. Observe that the disjoint sum of all MFi

was
required since Y`, Y`+1, . . . , Y`+k−1 may not be disjoint and the strategy π∗ need to know which Yj

the play is in.

Lower bound. In [10] the authors show a matching lower bound for sure winning strategies in
2-player games. It may be noted that in 2-player games any pure almost-sure winning or any pure
positive winning strategy is also a sure winning strategy. This observation along with the result
of [10] gives us the following result.
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Algorithm 1 MüllerQualitativeWithoutC

Input: A 21/2-player game graph G, a Müller objective Müller(F) for player 1,
with F ⊆ P(C) and C 6∈ F .

Output: W1 and W2.
1. Let C0, C1, . . . , Ck−1 be the maximal sets that appear in F .
2. U0 = ∅; j = 0; G0 = G;
3. do {

3.1 Dj = C \ Cj mod k;
3.2 Yj = Sj \ Attr2,©(χ−1(Dj), S

j);

3.3 (Aj
1, A

j
2) = MüllerQualitativeWithC(Gj � Yj,F � Cj mod k);

3.4 if (Aj
1 6= ∅)

3.4.1 Uj+1 = Uj ∪ Attr1,©(Uj ∪ Aj
1, S

j);
3.4.2 Gj+1 = G � (S \ Uj+1);

3.5 j = j + 1;
} while (j ≤ k ∨ ¬(j mod k = 0 ∧ j > k ∧ ∀i. j − k ≤ i ≤ j. Ai

1 = ∅));
4. return (W1,W2) = (Uj , S \ Uj).

Theorem 4 (Lower bound [10]) For all Müller winning conditions F ⊆ P(C), there is a 2-
player game (G,C, χ,F) (with a 2-player game graph G) such that every pure almost-sure and
positive winning strategy for player 1 requires memory of size at least mF ; and every pure almost-
sure and positive winning strategy for player 2 requires memory of size at least mF .

3.1 Complexity for qualitative analysis

We now present algorithms to compute the almost-sure and positive winning states for Müller
objectives Müller(F) in 21/2-player games. We will consider two cases: the case when C ∈ F and
when C 6∈ F . We present the algorithm for the later case (which recursively calls the former case).
Once the algorithm for the later case is obtained, we show how the algorithm can be iteratively
used to solve the former case.

Informal description of the algorithm. We present an algorithm to compute the positive win-
ning sets for player 1 and the almost-sure winning sets for player 2 for Müller objectives Müller(F)
for player 1 in 21/2-player game graphs. We consider the case with C 6∈ F and refer to this algo-
rithm as MüllerQualitativeWithoutC and the case when C ∈ F we refer to the algorithm as
MüllerQualitativeWithC. The algorithm proceeds iteratively removing positive winning sets for
player 1: at iteration j the game graph is denoted as Gj and the set of states as Sj. The algorithm
is described as Algorithm 1.

Correctness. If W1 and W2 are outputs of Algorithm 1, then W1 = 〈〈1〉〉pos (Müller(F)) and
W2 = 〈〈2〉〉almost (Müller(F)). The correctness follows from the correctness arguments of Theorem 3.
We now present an algorithm to compute the almost-sure winning states 〈〈1〉〉almost (Müller(F)) for
player 1 and positive winning states 〈〈2〉〉pos (Müller(F)) for player 2 for Müller objectives Müller(F)
with C 6∈ F . Once we present this algorithm, it is easy to exchange the roles of the players to
obtain the algorithm MüllerQualitativeWithC. The algorithm to compute almost-sure winning
states for player 1 for Müller objectives Müller(F) with C 6∈ F proceeds as follows: the algorithm
iteratively uses MüllerQualitativeWithoutC and runs for atmost |S| iterations. At iteration i
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Algorithm 2 MüllerQualitativeWithoutCIterative

Input: A 21/2-player game graph G, a Müller objective Müller(F) for player 1,
with F ⊆ P(C) and C 6∈ F .

Output: W1 and W2.
1. Let C0, C1, . . . , Ck−1 be the maximal sets that appear in F .
2. X0 = ∅; j = 0; G0 = G;
3. do {

3.1 (Aj
1, A

j
2) = MüllerQualitativeWithoutC(Gj,F);

3.2 if (Aj
2 6= ∅);

3.2.1 Xj+1 = Xj ∪ Attr2,©(Xj ∪ Aj
2, S

0);
3.2.2 Gj+1 = G � (S \ Xj+1);

3.5 j = j + 1;

} while (Aj−1
2 6= ∅);

4. return (W1,W2) = (S \ Xj,Xj).

the algorithm computes the almost-sure winning set Aj
2 for player 2 in the present sub-game Gj ,

and the set of states such that player 2 can reach Aj
2 with positive probability. The above set is

removed from the game graph, and the algorithm iterates on a smaller game graph. The algorithm
is formally described as Algorithm 2.

Correctness. Let W1 and W2 be the output of Algorithm 2, then W1 = 〈〈1〉〉almost (Müller(F))
and W2 = 〈〈2〉〉pos (Müller(F)). It is clear that W2 ⊆ 〈〈2〉〉pos (Müller(F)). We now argue that W1 =
〈〈1〉〉almost (Müller(F)) to complete the correctness arguments. When the algorithm terminates, let
the game graph by Gj , and we have Aj

2 = ∅. Then in Gj , player 1 wins with positive probability
from all states. Since Müller objectives are tail objectives (independent of finite prefixes of plays),
it follows from the results of [2] that if a player wins in a game with positive probability from all
states for a Müller objective, then the player wins with value 1 from all states. It follows that
W1 = 〈〈1〉〉almost (Müller(F)). The correctness follows.

Time and space complexity. We now argue that the space requirement for the algorithms are
polynomial. Let us denote the space recurrence of Algorithm 1 as S(n, c) for game graphs with
n states and Müller objectives Müller(F) with c colors (i.e., F ⊆ P(C) with |C| = c). Then the
recurrence satisfies that S(n, c) = O(n) + S(n, c − 1) = O(n · c). The recurrence requires space
for recursive calls with at least one less color (denoted by S(n, c − 1)), and O(n) space for the
computation of the loop of the algorithm. This gives a PSPACE upper bound, and a matching
lower bound (of PSPACE-hardness) for the special case of 2-player game graphs is given in [15].

Theorem 5 (Algorithm and complexity) The following assertions hold.

1. Given a game (G,C, χ,F) Algorithm 1 and Algorithm 2 computes an almost-sure winning
strategy and the almost-sure winning sets in O((|S|+ |E|) ·d)h+1) time and O(|S| · |C|) space;
where d is the maximum degree of a node and h is the height of the Zielonka tree ZF .

2. Given a game (G,C, χ,F) and a state s, it is PSPACE-complete to decide whether s ∈
〈〈1〉〉almost (Müller(F)).
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4 Optimal Memory Bound for Pure Optimal Strategies

In this section we extend the sufficiency results for families of strategies from almost-sure winning
to optimality with respect to all Müller objectives. In the following, we fix a 21/2-player game
graph G. We first present a useful proposition and then some definitions. Since Müller objectives
are infinitary objectives (independent of finite prefixes) the following proposition is immediate.

Proposition 1 (Optimality conditions) For all Müller objectives Φ, for every s ∈ S the fol-
lowing conditions hold.

1. If s ∈ S1, then for all t ∈ E(s) we have 〈〈1〉〉val (Φ)(s) ≥ 〈〈1〉〉val (Φ)(t), and for some t ∈ E(s)
we have 〈〈1〉〉val (Φ)(s) = 〈〈1〉〉val (Φ)(t).

2. If s ∈ S2, then for all t ∈ E(s) we have 〈〈1〉〉val (Φ)(s) ≤ 〈〈1〉〉val (Φ)(t), and for some t ∈ E(s)
we have 〈〈1〉〉val (Φ)(s) = 〈〈1〉〉val (Φ)(t).

3. If s ∈ S©, then 〈〈1〉〉val (Φ)(s) =
( ∑

t∈E(s)〈〈1〉〉val (Φ)(t) · δ(s)(t)
)
.

Similar conditions hold for the value function 〈〈2〉〉val (Ω \ Φ) of player 2.

Definition 4 (Value classes) Given a Müller objective Φ, for every real r ∈ [0, 1] the value class
with value r is VC(Φ, r) = { s ∈ S | 〈〈1〉〉val (Φ)(s) = r } is the set of states with value r for player 1.
For r ∈ [0, 1] we denote by VC(Φ, > r) =

⋃
q>r VC(Φ, q) the value classes greater than r and by

VC(Φ, < r) =
⋃

q<r VC(Φ, q) the value classes smaller than r.

Definition 5 (Boundary probabilistic states) Given a set U of states, a state s ∈ U ∩ S© is
a boundary probabilistic state for U if E(s) ∩ (S \ U) 6= ∅, i.e., the probabilistic state has an edge
out of the set U . We denote by Bnd(U) the set of boundary proababilistic states for U . For a value
class VC(Φ, r) we denote by Bnd(Φ, r) the set of boundary probabilistic states of value class r.

Observation. It follows from Proposition 1 that for a state s ∈ Bnd(Φ, r) we have E(s)∩VC(Φ, >
r) 6= ∅ and E(s) ∩ VC(Φ, < r) 6= ∅, i.e., the boundary probabilistic states have edges to higher
and lower value classes. It follows that for all Müller objectives Φ we have Bnd(Φ, 1) = ∅ and
Bnd(Φ, 0) = ∅.

Reduction of a value class. Given a set U of states, such that U is δ-live, let Bnd(U) be the set
boundary probabilistic states for U . We denote by GBnd(U) the subgame G � U where every state in
Bnd(U) is converted to an absorbing state (state with a self-loop). Since U is δ-live, we have GBnd(U)

is a subgame. Given a value class VC(Φ, r), let Bnd(Φ, r) be the set of boundary probabilistic
states in VC(Φ, r). We denote by GBnd(Φ,r) the subgame where every boundary probabilistic state
in Bnd(Φ, r) is converted to an absorbing state. We denote by GΦ,r = GBnd(Φ,r) � VC(Φ, r): this is
a subgame since every value class is δ-live by Proposition 1, and δ-closed as all states in Bnd(Φ, r)
are converted to absorbing states.

Lemma 4 (Almost-sure reduction) Let G be a 21/2-player game graph and F ⊆ P(C) be a
Müller winning condition. Let Φ = Müller(F). For 0 < r < 1, the following assertions hold.

1. Player 1 wins almost-surely for objective Φ ∪ Reach(Bnd(Φ, r)) from all states in GΦ,r, i.e.,
〈〈1〉〉almost (Φ ∪Reach(Bnd(Φ, r))) = VC(Φ, r) in the subgame GΦ,r.
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2. Player 2 wins almost-surely for objective Φ ∪ Reach(Bnd(Φ, r)) from all states in GΦ,r, i.e.,
〈〈2〉〉almost (Φ ∪Reach(Bnd(Φ, r))) = VC(Φ, r) in the subgame GΦ,r.

Proof. We prove the first part and the second part follows from symmetric arguments. The result
is obtained through an argument by contradiction. Let 0 < r < 1, and let

q = max{ 〈〈1〉〉val (Φ)(t) | t ∈ E(s) \ VC(Φ, r), s ∈ VC(Φ, r) ∩ S1 },

that is, q is the maximum value a successor state t of a player 1 state s ∈ VC(Φ, r) such that the
successor state t is not in VC(Φ, r). By Proposition 1 we must have q < r. Hence if player 1 chooses
to escape the value class VC(Φ, r), then player 1 gets to see a state with value at most q < r. We
consider the subgame GΦ,r. Let U = VC(Φ, r) and Z = Bnd(Φ, r). Assume towards contradiction,
there exists a state s ∈ U such that s 6∈ 〈〈1〉〉almost (Φ ∪ Reach(Z)). Then we have s ∈ (U \ Z) and
〈〈2〉〉val (Φ ∩ Safe(U \ Z))(s) > 0. It follows from the results of [2] that for all Müller objectives Ψ,
if 〈〈2〉〉val (Ψ)(s) > 0, then for some state s1 we have 〈〈2〉〉val (Ψ)(s1) = 1. Observe that in GΦ,r we
have all states in Z are absorbing states, and hence the objective Φ ∩ Safe(U \ Z) is equivalent to
the objective Φ ∩ coBüchi(U \ Z), which is a Müller objective. It follows that there exists a state
s1 ∈ (U \ Z) such that 〈〈2〉〉val (Φ ∩ Safe(U \ Z)) = 1. Hence there exists a strategy π̂ for player 2
in GΦ,r such that for all strategies σ̂ for player 1 in GΦ,r we have Prσ̂,π̂

s1
(Φ ∩ Safe(U \ Z)) = 1. We

will now construct a strategy π∗ for player 2 as a combination of the strategy π̂ and a strategy in
the original game G. By Martin’s determinacy result (Theorem 2), for all ε > 0, there exists an
ε-optimal strategy πε for player 2 in G such that for all s ∈ S and for all strategies σ for player 1
we have

Prσ,πε
s (Φ) ≥ 〈〈2〉〉val (Φ)(s) − ε.

Let r − q = α > 0, and let ε = α
2 and consider an ε-optimal strategy for player 2 in G. The

strategy π∗ in G is constructed as follows: for a history w that remains in U , player 2 follows π̂;
and if the history reaches (S \ U), then player 2 follows the strategy πε. Formally, for a history
w = 〈s1, s2, . . . , sk〉 we have

π∗(w) =

{
π̂(w) if for all 1 ≤ j ≤ k. sj ∈ U ;

πε(sj, sj+1, . . . , sk) where j = min{ i | si 6∈ U }

We consider the case when the play starts at s1. The strategy π∗ ensures the following: if the game
stays in U , then the strategy π̂ is followed, and given the play stays in U , the strategy π̂ ensures
with probability 1 that Φ is satisfied and Bnd(Φ, r) is not reached. Hence if the game escapes U
(i.e., player 1 chooses to escape U), then it reaches a state with value at most q for player 1. We
consider an arbitrary strategy σ for player 1 and consider the following cases.

1. If Prσ,π∗

s1
(Safe(U)) = 1, then we have Prσ,π∗

s1
(Φ ∩ Safe(U)) = Prσ,π̂

s1
(Φ ∩ Safe(U)) = 1. Hence

we also have Prσ,π̂
s1

(Φ) = 1, i.e., we have Prσ,π∗

s1
(Φ) = 0.

2. If Prσ,π∗

s1
(Reach(S \ U)) = 1, then the play reaches a state with value for player 1 at most q

and the strategy πε ensures that Prσ,π∗

s1
(Φ) ≤ q + ε.

3. If Prσ,π∗

s1
(Safe(U)) > 0 and Prσ,π∗

s1
(Reach(S \U)) > 0, then we condition on both these events
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and have the following:

Prσ,π∗

s1
(Φ) = Prσ,π∗

s1
(Φ | Safe(U)) · Prσ,π∗

s1
(Safe(U))

+ Prσ,π∗

s1
(Φ | Reach(S \ U)) · Prσ,π∗

s1
(Reach(S \ U))

≤ 0 + (q + ε) · Prσ,π∗

s1
(Reach(S \ U))

≤ q + ε.

The above inequalities are obtained as follows: given the event Safe(U), the strategy π∗ follows
π̂ and ensures that Φ is satisfied with probability 1 (i.e., Φ is satisfied with probability 0);
else the game reaches states where the value for player 1 is at most q, and then the analysis
is similar to the previous case.

Hence for all strategies σ we have

Prσ,π∗

s1
(Φ) ≤ q + ε = q +

α

2
= r −

α

2
.

Hence we must have 〈〈1〉〉val (Φ)(s1) ≤ r−α
2 . Since α > 0 and s1 ∈ VC(Φ, r) (i.e., 〈〈1〉〉val (Φ)(s1) = r),

we have a contradiction. The desired result follows.

Lemma 5 (Almost-sure to optimality [4]) Let G be a 21/2-player game graph and F ⊆ P(C)
be a Müller winning condition. Let Φ = Müller(F). Let σ be a strategy such that

• σ is an almost-sure winning strategy from the almost-sure winning states (〈〈1〉〉almost (Φ) in
G); and

• σ is an almost-sure winning strategy for objective Φ∪Reach(Bnd(Φ, r)) in the game GΦ,r, for
all 0 < r < 1.

Then σ is an optimal strategy.

Proof. We prove the result for the case when σ is memoryless (randomized memoryless). The case
when σ is finite-memory with memory M, the arguments can be repeated on the game G × M (the
usual synchronous product of G and the memory M).

Consider the player-2 MDP Gσ with the objective Müller(F) for player 2. In MDPs with Müller
objectives randomized memoryless optimal strategies exist [3]. We fix a randomized memoryless
optimal strategy π for player 2 in Gσ . Let W1 = 〈〈1〉〉almost (Φ) and W2 = 〈〈2〉〉almost (Φ). We consider
the Markov chain Gσ,π and analyze the recurrent states of the Markov chain.

Recurrent states in Gσ,π. Let U be a closed, connected recurrent set in Gσ,π (i.e., U is a bottom
strongly connected component in the graph of Gσ,π). Let q = max{ r | VC(Φ, r) ∩ U 6= ∅ }, i.e.,
for all q′ > q we have VC(Φ, q′) ∩ U = ∅ or in other words VC(Φ, > q) ∩ U = ∅. For a state
s ∈ U ∩ VC(Φ, q) we have the following cases.

1. If s ∈ S1, then Supp(σ(s)) ⊆ VC(Φ, q). This is because in the game GΦ,q the edges of player 1
consists of edges in the value class VC(Φ, q)

2. If s ∈ S© and s ∈ Bnd(Φ, q), then it means that U ∩ VC(Φ, q′) 6= ∅, for some q′ > q: this is
because E(s) ∩ VC(,Φ, > q) 6= ∅ for s ∈ Bnd(Φ, q) and U is closed. This is not possible since
by assumption on U we have U ∩ VC(Φ, > q) = ∅. Hence we have s ∈ S© ∩ (U \ Bnd(Φ, q)),
and E(s) ⊆ VC(Φ, q).
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3. If s ∈ S2, then since U ∩ VC(Φ, > q) = ∅, it follows by Proposition 1 that Supp(π(s)) ⊆
VC(Φ, q).

Hence for all s ∈ U ∩ VC(Φ, q) we have all successors of U in Gσ,π are in VC(Φ, q), and moreover
U ∩ Bnd(Φ, q) = ∅, i.e., U is contained in a value class and does not intersect with the boundary
probabilistic states. By the property of strategy σ, if U ∩ (S \ W2) 6= ∅, then for all s ∈ U we
have Prσ,π

s (Φ) = 1: this is because for all r > 0, the strategy σ is almost-sure winning for objective
Φ∪Reach(Bnd(Φ, r)) in GΦ,r. Since σ is a fixed strategy and π is optimal against σ, it follows that
if 〈〈1〉〉val (Φ)(s) < 1, then Prσ,π

s (Φ) < 1. Hence it follows that U ∩ (S \ (W1 ∪ W2)) = ∅. Hence
the recurrent states of Gσ,π are contained in W1 ∪ W2, i.e., we have Prσ,π

s (Reach(W1 ∪ W2)) = 1.
Since σ is an almost-sure winning strategy in W1, we have Prσ,π

s (Φ) = Prσ,π
s (Reach(W2)). Hence

the strategy π maximizes the probability to reach W2 in the MDP Gσ.

Analyzing reachability in Gσ. Since in Gσ player 2 maximizes the probability to reachability to W2,
we analyze the player-2 MDP Gσ with objective Reach(W2) for player 2. For every state s consider
a real-valued variable xs = 1−〈〈1〉〉val (Φ)(s) = 〈〈2〉〉val (Φ)(s). The following constraints are satisfied

xs =
∑

t∈Supp(σ(s)) xt · σ(s)(t) s ∈ S1;

xs =
∑

t∈E(s) xt · δ(s)(t) s ∈ S©;

xs ≥ xt s ∈ S2;
xs = 1 s ∈ W2;

The first equality follows as for all r ∈ [0, 1] and for all s ∈ S ∩ VC(Φ, r) we have Supp(σ(s)) ⊆
VC(Φ, r). The next equality and the first inequality follows from Proposition 1. Since the values
for MDPs with reachability objective is characterized as the least value vector satisfying the above
constraints [13], it follows that for all s ∈ S and for all strategies π1 ∈ Π we have

Prσ,π1

s (Reach(W2)) ≤ xs = 〈〈2〉〉val (Φ)(s).

Hence we have Prσ,π
s (Φ) ≤ 〈〈2〉〉val (Φ)(s), i.e., Prσ,π

s (Φ) ≥ 1 − 〈〈2〉〉val (Φ)(s) = 〈〈1〉〉val (Φ)(s). Thus
we obtain that σ is an optimal strategy.

Müller reduction for GΦ,r. Given a Müller winning condition F and the objective Φ =
Müller(F), we consider the game GΦ,r with the objective Φ ∪ Reach(Bnd(Φ, r)) for player 1. We
present a simple reduction to a game with objective Φ. The reduction is achieved as follows: with-
out loss of generality we assume F 6= ∅, and let F ∈ F and F = { cF

1 , cF
2 , . . . , cF

f }. We construct a

game graph G̃Φ,r with objective Φ for player 1 as follows: convert every state sj ∈ Bnd(Φ, r) to a

cycle Uj = { sj
1, s

j
2, . . . , s

j
f } with χ(sj

i ) = cF
i , i.e., once sj is reached the cycle Uj is repeated with

χ(Uj) ∈ F . An almost-sure winning strategy in GΦ,r with objective Φ ∪ Reach(Bnd(Φ, r)), is an

almost-sure winning strategy in G̃Φ,r with objective Φ; and vice-versa. The present reduction along
with Lemma 4 and Lemma 5 gives us Lemma 6. Observe that Lemma 4 ensures that strategies
satisfying conditions of Lemma 5 exist. Lemma 6 along with Theorem 3 gives us Theorem 6.

Lemma 6 For all Müller winning conditions F , the following assertions hold.

1. If the family of pure finite-memory strategies of size `P
F suffices for almost-sure winning on

21/2-player game graphs, then the family of pure finite-memory strategies of size `P
F suffices

for optimality on 21/2-player game graphs.

2. If the family of randomized finite-memory strategies of size `R
F suffices for almost-sure winning

on 21/2-player game graphs, then the family of randomized finite-memory strategies of size `R
F

suffices for optimality on 21/2-player game graphs.
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Theorem 6 For all Müller winning conditions F , the family of pure finite-memory strategies of
size mF suffices for optimality on 21/2-player game graphs.

4.1 Complexity of quantitative analysis

In this section we consider the complexity of quantitative analysis of 21/2-player games with Müller
objectives. We first prove some properties of the values of 21/2-player games with Müller objectives.
We start with a lemma.

Lemma 7 For all 21/2-player game graphs, for all Müller objectives Φ, there exist optimal strategies
σ and π for player 1 and player 2 such that the following assertions hold:

1. for all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have Prσ,π
s (Reach(Bnd(Φ, r))) = 1;

2. for all s ∈ S we have
Prσ,π

s (Reach(W1 ∪ W2)) = 1;

Prσ,π
s (Reach(W1)) = 〈〈1〉〉val (Φ)(s); Prσ,π

s (Reach(W2)) = 〈〈2〉〉val (Φ)(s);

where W1 = 〈〈1〉〉almost (Φ) and W2 = 〈〈2〉〉almost (Φ).

Proof. Consider an optimal strategy σ that satisfies the conditions of Lemma 5, and a strategy
π that satisfies analogous conditions for player 2. For all r ∈ (0, 1), the strategy σ is almost-sure
winning for the objective Φ ∪ Reach(Bnd(Φ, r)) and the strategy π is almost-sure winning for the
objective Φ ∪ Reach(Bnd(Φ, r)), in the game GΦ,r. Thus we obtain that for all r ∈ (0, 1), for all
s ∈ VC(Φ, r) we have

Prσ,π
s (Φ ∪ Reach(Bnd(Φ, r))) = 1; and Prσ,π

s (Φ ∪ Reach(Bnd(Φ, r))) = 1.

It follows that for all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have

Prσ,π
s (Reach(Bnd(Φ, r))) = 1.

From the above condition it easily follows that for all s ∈ S we have Prσ,π
s (Reach(W1 ∪ W2)) = 1.

Since σ and π are optimal strategies, all the requirements of the second condition are fulfilled.
Hence, the strategies σ and π are witness strategies to prove the desired result.

Characterizing values for 21/2-player Müller games. We now relate the values of 21/2-player
game graphs with Müller objectives with the values of a Markov chain, on the same state space,
with reachability objectives. Once the relationship is established we obtain bound on preciseness
of the values. We use Lemma 7 to present two transformations to Markov chains.

Markov chain transformation. Given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ)
with a Müller objective Φ, let W1 = 〈〈1〉〉almost (Φ) and W2 = 〈〈2〉〉almost (Φ) be the set of almost-sure
winning states for the players. Let σ and π be optimal strategies for the players (obtained from
Lemma 7) such that

1. for all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have Prσ,π
s (Reach(Bnd(Φ, r))) = 1;

2. for all s ∈ S we have
Prσ,π

s (Reach(W1 ∪ W2)) = 1;

Prσ,π
s (Reach(W1)) = 〈〈1〉〉val (Φ)(s); Prσ,π

s (Reach(W2)) = 〈〈2〉〉val (Φ)(s).
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We first consider a Markov chain that mimics the stochastic process under σ and π. The Markov
chain G̃ = (S, δ̃) = MC1(G,Φ) with the transition function δ̃ is defined as follows:

1. for s ∈ W1 ∪ W2 we have δ̃(s)(s) = 1;

2. for r ∈ (0, 1) and s ∈ VC(Φ, r) \ Bnd(Φ, r) we have δ̃(s)(t) = Prσ,π
s (Reach({ t })), for t ∈

Bnd(Φ, r) (since for all s ∈ VC(Φ, r) we have Prσ,π
s (Reach(Bnd(Φ, r))) = 1, the transition

function δ̃ at s is a probability distribution); and

3. for r ∈ (0, 1) and s ∈ Bnd(Φ, r) we have δ̃(s)(t) = δ(s)(t), for t ∈ S.

The Markov chain G̃ mimics the stochastic proces under σ and π and yields the following lemma.

Lemma 8 For all 21/2-player game graphs G and all Müller objectives Φ, consider the Markov
chain G̃ = MC1(G,Φ). Then for all s ∈ S we have 〈〈1〉〉val (Φ)(s) = Prs(Reach(W1)), that is, the
value for Φ in G is equal to the probability to reach W1 in the Markov chain G̃.

Second transformation. We now transform the Markov chain G̃ to another Markov chain Ĝ. We
start with the observation that for r ∈ (0, 1), for all states s, t ∈ Bnd(Φ, r) in the Markov chain G̃ we
have Prs(Reach(W1)) = Prt(Reach(W1)) = r. Moreover, for r ∈ (0, 1), every state s ∈ Bnd(Φ, r)
has edges to higher and lower value classes. Hence for a state s ∈ VC(Φ, r) \ Bnd(Φ, r) if we
chose a state tr ∈ Bnd(Φ, r) and make the transition probability from s to tr to 1, the probability
to reach W1 does not change. This motivates the following transformation: given a 21/2-player
game graph G = ((S,E), (S1, S2, S©), δ) with a Müller objective Φ, let W1 = 〈〈1〉〉almost (Φ) and
W2 = 〈〈2〉〉almost (Φ) be the set of almost-sure winning states for the players. Let σ and π be optimal
strategies for the players (obtained from Lemma 7) such that

1. for all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have Prσ,π
s (Reach(Bnd(Φ, r))) = 1;

2. for all s ∈ S we have
Prσ,π

s (Reach(W1 ∪ W2)) = 1;

Prσ,π
s (Reach(W1)) = 〈〈1〉〉val (Φ)(s); Prσ,π

s (Reach(W2)) = 〈〈2〉〉val (Φ)(s).

The Markov chain Ĝ = (S, δ̂) = MC2(G,Φ) with the transition function δ̂ is defined as follows:

1. for s ∈ W1 ∪ W2 we have δ̂(s)(s) = 1;

2. for r ∈ (0, 1) and s ∈ VC(Φ, r) \ Bnd(Φ, r), pick t ∈ Bnd(Φ, r) and δ̂(s)(t) = 1; and

3. for r ∈ (0, 1) and s ∈ Bnd(Φ, r) we have δ̂(s)(t) = δ(s)(t), for t ∈ S.

Observe that for δ>0 = { δ(s)(t) | s ∈ S©, t ∈ S, δ(s)(t) > 0 } and δ̂>0 = { δ̂(s)(t) | s ∈ S, t ∈

S, δ̂(s)(t) > 0 }, we have δ̂>0 ⊆ δ>0 ∪ { 1 }, i.e., the transition probabilities in Ĝ are subset of
transition probabilities in G. Let

δu = max{ q | δ(s)(t) =
p

q
for s ∈ S© and δ(s)(t) > 0 };

δ̂u = max{ q | δ̂(s)(t) =
p

q
for s ∈ S© and δ̂(s)(t) > 0 }.

Since δ̂>0 ⊆ δ>0 ∪ { 1 }, it follows that δ̂u ≤ δu. The following lemma is immediate from Lemma 8
and the equivalence of the probabilities to reach W1 in G̃ and Ĝ.
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Lemma 9 For all 21/2-player game graphs G and all Müller objectives Φ, consider the Markov
chain Ĝ = MC2(G,Φ). Then for all s ∈ S we have 〈〈1〉〉val (Φ)(s) = Prs(Reach(W1)), that is, the
value for Φ in G is equal to the probability to reach W1 in the Markov chain Ĝ.

Lemma 10 is a result from [7] (Lemma 2 of [7]).

Lemma 10 ([7]) Let G = ((S,E), (S1, S2, S©), δ) be 21/2-player game graph with n states such
that every state has at most two successors and for all s ∈ S© and t ∈ E(s) we have δ(s)(t) = 1/2.
Then for all R ⊆ S, for all s ∈ S we have

〈〈1〉〉val (Reach(R))(s) =
p

q
where p, q are integers with p, q ≤ 4n−1.

The results of [27] showed that a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ) can be

reduced to an equivalent 21/2-player game graph G̃ = ((S̃, Ẽ), (S̃1, S̃2, S̃P ), δ̃) such that every state
s̃ ∈ S̃ has at most two successors and for all s̃ ∈ S̃P and t̃ ∈ Ẽ(s̃) we have δ̃(s̃)(t̃) = 1/2, and
|S̃| = 2 · |E| · log δu. Lemma 11 follows from this reduction and Lemma 10.

Lemma 11 ([27]) Let G = ((S,E), (S1, S2, S©), δ) be 21/2-player game graph. Then for all R ⊆ S,
for all s ∈ S we have

〈〈1〉〉val (Reach(R))(s) =
p

q
where p, q are integers with p, q ≤ 42·|E|·log δu = δ4·|E|

u .

Lemma 12 For all 21/2-player game graphs G = ((S,E), (S1, S2, S©), δ) and all Müller objectives
Φ, for all states s ∈ S \ (W1 ∪ W2) we have

〈〈1〉〉val (Φ)(s) =
p

q
where p, q are integers with 0 < p < q ≤ δ4·|E|

u ,

where W1 and W2 are the almost-sure winning states for player 1 and player 2, respectively.

Proof. Lemma 9 shows the values of the game G can be related to the values of reaching a set of
states in a Markov chain Ĝ defined on the same state space, and also we have δ̂u ≤ δu. The result
on the bound on then follows from Lemma 11 and the fact that Markov chains are a subclass of
21/2-player games.

Lemma 13 Let G = ((S,E), (S1, S2, S©), δ) be a 21/2-player game with a Müller objective Φ. Let
P = (V0, V1, V2, . . . , Vk) be a partition of the state space S, and let r0 > r1 > r2 > . . . > rk be
k-rational values such that the following conditions hold:

1. V0 = 〈〈1〉〉almost (Φ) and Vk = 〈〈2〉〉almost (Φ);

2. r0 = 1 and rk = 0;

3. for all 1 ≤ i ≤ k − 1 we have Bnd(Vi) 6= ∅ and Vi is δ-live;

4. for all 1 ≤ i ≤ k − 1 and all s ∈ S2 ∩ Vi we have E(s) ⊆
⋃

j≤i Vj ;

5. for all 1 ≤ i ≤ k − 1 we have Vi = 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Vi))) in GBnd(Vi);

6. let xs = ri, for s ∈ Vi, and for all s ∈ S©, let xs satisfy that xs =
∑

t∈E(s) xt · δ(s)(t).
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Then we have 〈〈1〉〉val (Φ)(s) ≥ xs for all s ∈ S.

Proof. Let σ be a finite-memory strategy with memory M such that (a) σ is almost-sure winning
from V0; and (b) for all 1 ≤ i ≤ k−1 and s ∈ Vi and all strategies π for player 2 in GBnd(Vi) we have
Prσ,π

s (Φ ∪ Reach(Bnd(Vi)) = 1; such a strategy exists since condition 1 (V0 = 〈〈1〉〉almost (Φ)) and
condition 5 are satisfied. Let π be a finite-memory counter-optimal strategy for player 2 in Gσ, i.e.,
π is optimal for player 2 for objective Φ in Gσ . We claim that for all 1 ≤ i ≤ k−1 and for all s ∈ Vi

we have Prσ,π
s

(
Reach(Bnd(Vi) ∪

⋃
j<i Vj)

)
= 1. To prove the claim, assume towards contradiction

that for some 1 ≤ i ≤ k − 1 and s ∈ Vi we have Prσ,π
s

(
Reach(Bnd(Vi) ∪

⋃
j<i Vj)

)
< 1. Then

since condition 4 holds we would have Prσ,π
s (Safe(Vi \ Bnd(Vi)) > 0. If Prσ,π

s (Safe(Vi \ Bnd(Vi)) >
0, then there must be a closed connected recurrent set C in Gσ,π such that C is contained in
(Vi \ Bnd(Vi)) × M. Hence for states s̃ ∈ C we would have Prσ,π

s̃
(Φ) = 1; this holds since we

have Prσ,π
s (Φ ∪ Reach(Bnd(Vi))) = 1. This contradicts the facts that π is counter-optimal and

Vi ∩ 〈〈1〉〉almost (Φ) = ∅. Thus we obtain that for all 1 ≤ i ≤ k − 1 and all s ∈ Vi we have
Prσ,π

s (Reach(Bnd(Vi)∪
⋃

j<i Vj)) = 1. It follows that for all s ∈ S we have Prσ,π
s (Reach(V0∪Vk)) = 1.

By the ordering r0 > r1 > r2 > . . . > rk, condition 4, and condition 6, it follows that for all s ∈ S
we have Prσ,π

s (Reach(Vk)) ≤ 1−xs; this follows by the analysis of the MDP Gσ with the reachability
objective Reach(Vk) for player 2. Hence we have Prσ,π

s (Reach(V0)) ≥ xs. Since σ is almost-sure
winning from V0, we obtain that for all s ∈ S we have 〈〈1〉〉val (Φ)(s) ≥ xs. The desired result
follows.

A PSPACE algorithm for quantitative analysis. We now present a PSPACE algorithm for
quantitative analysis for 21/2-player games with Müller objectives Müller(F). A PSPACE lower
bound is already known for the qualitative analysis of 2-player games with Müller objectives [15].
To obtain an upper bound we present a NPSPACE algorithm. The algorithm is based on Lemma 13.
Given a 21/2-player game G = ((S,E), (S1, S2, S©), δ) with a Müller objective Φ, a state s and a
rational number r, the following assertion hold: if 〈〈1〉〉val (Φ)(s) ≥ r, then there exists a partition
P = (V0, V1, V2, . . . , Vk) of S and rational values r0 > r1 > r2 > . . . > rk, such that ri = pi

qi
with

pi, qi ≤ δ
4·|E|
u , such that conditions of Lemma 13 are satisfied, and s ∈ Vi with ri ≥ r. The witness

P is the value class partition and the rational values represent the values of the value classes. From
the above observation we obtain the algorithm for quantitative analysis as follows: given a 21/2-
player game graph G = ((S,E), (S1, S2, S©), δ) with a Müller objective Φ, a state s and a rational
r, to verify that 〈〈1〉〉val (Φ)(s) ≥ r, the algorithm guesses a partition P = (V0, V1, V2, . . . , Vk) of S

and rational values r0 > r1 > r2 > . . . > rk, such that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u , and then verifies

that all the conditions of Lemma 13 are satisfied, and s ∈ Vi with ri ≥ r. Observe that since the
guesses of the rational values can be made with O(|G| · |S| · |E|) bits, the guess is polynomial in size
of the game. The condition 1 and the condition 5 of Lemma 13 can be verified in PSPACE by the
PSPACE qualitative algorithms (see Theorem 5), and all the other conditions can be checked in
polynomial time. Since NPSPACE=PSPACE we obtain a PSPACE upper bound for quantitative
analysis of 21/2-player games with Müller objectives.

Theorem 7 Given a 21/2-player game G, a Müller objective Φ, a state s, and a rational r in
binary, it is PSPACE-complete to decide if 〈〈1〉〉val (Φ)(s) ≥ r.

4.2 The complexity of union-closed and upward-closed Müller objectives

We now consider two special classes of Müller objectives: namely, union-closed and upward-closed
objectives. We will show the quantitative analysis of both these classes of objectives in 21/2-player
games under succinct representation is co-NP-complete. We first present these conditions.
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1. Union-closed and basis conditions. A Müller winning condition F ⊆ P(C) is union-closed if
for all I, J ∈ F we have I ∪J ∈ F . A basis condition B ⊆ P(C), given as a set B specifies the
winning condition F = { I ⊆ C | ∃B1, B2, . . . , Bk ∈ B.

⋃
1≤i≤k Bi = I }. A Müller winning

condition F can be specified as a basis condition only if F is union-closed.

2. Upward-closed and superset conditions. A Müller winning condition F ⊆ P(C) is upward-
closed if for all I ∈ F and I ⊆ J ⊆ C we have J ∈ F . A superset condition U ⊆ P(C), specifies
the winning condition F = { I ⊆ C | J ⊆ I for some J ∈ U }. A Müller winning condition
F can be specified as a superset condition only if F is upward-closed. Any upward-closed
condition is also union-closed.

The results of [15] showed that the basis and superset conditions are more succinct ways to
represent union-closed and upward-closed condtions, respectively, than the explicit representation.
The following proposition was also shown in [15] (see [15] for the formal description of the notion
of succinctness and translability).

Proposition 2 ([15]) A superset condition is polynomially translatable to an equivalent basis con-
dition.

Strategy complexity for union-closed conditions. We observe that for an union-closed ob-
jective F , the Zielonka tree construction ensures that mF = 1. Then from Theorem 6 we obtain
that for objectives Müller(F) pure memoryless optimal strategies exist in 21/2-player game graphs,
for union-closed conditions F .

Proposition 3 For all union-closed winning conditions F we have mF = 1; and pure memoryless
optimal strategies exist for objective Müller(F) for all 21/2-player game graphs.

Complexity of basis and superset conditions. The results of [15] established that deciding the
winner in 2-player games (that is qualitative analysis for 2-player game graphs) with union-closed
and upward-closed conditions specified as basis and superset conditions is coNP-complete. The
lower bound for the special case of 2-player games, yields a coNP lower bound for the quantitative
analysis of 21/2-player games with union-closed and upward-closed conditions specified as basis and
superset conditions. We will prove a matching upper bound. We prove the upper bound for basis
conditions, and by Proposition 2 the result also follows for superset conditions.

The upper bound for basis games. We present a coNP upper bound for the quantitative
analysis for basis games. Given a 21/2-player game graph and a Müller objective Φ = Müller(F),
where F is union-closed and specified as a basis condtion defined by B, let s be a state and r
be a rational given in binary. The problem whether 〈〈1〉〉val (Φ)(s) ≥ r can be decided in coNP.
We present a polynomial witness and polynomial time verification procedure when the answer to
the problem is “NO”. Since F is union-closed, it follows from Proposition 3 that pure memoryless
optimal strategy π exists for player 2. The pure memoryless optimal strategy is the polynomial
witness to the problem, and once π is fixed we obtain a 11/2-player game graph Gπ. To present a
polynomial time verification procedure we present a polynomial time algorithm to compute values
in an MDP (or 11/2-player games) with basis condition B.

Preliminaries on for MDPs. We develop some facts on end components [8, 9] that will be useful
tools for analysis of MDPs.
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Definition 6 (End component) A set U ⊆ S of states is an end component if U is δ-closed and
the subgame graph G � U is strongly connected.

We denote by E ⊆ 2S the set of all end components of G. The next lemma states that, under
any strategy (memoryless or not), with probability 1 the set of states visited infinitely often along
a play is an end component. This lemma allows us to derive conclusions on the (infinite) set of
plays in an MDP by analyzing the (finite) set of end components in the MDP.

Lemma 14 [8, 9] For all states s ∈ S and strategies σ ∈ Σ, we have Prσs (Müller(E)) = 1.

Given a Müller condition F , we denote by U = E ∩ { F ⊆ S | χ−1(F ) ∈ F } the set of end
components that are Müller sets. These are the winning end components. Let Tend =

⋃
U∈U U

be their union. From Lemma 14 and Theorem 4 of [2], it follows that the maximal probability of
satisfying the objective Müller(F) is equal to the maximal probability of reaching the union of the
winning end components.

Lemma 15 For all 11/2-player games and for all Müller objectives Müller(F) we have
〈〈1〉〉val (Müller(F)) = 〈〈1〉〉val (Reach(Tend)).

Maximal end components. An end component U ⊆ S is maximal in V ⊆ S if U ⊆ V , and if
there is no end component U ′ with U ⊂ U ′ ⊆ V . Given a set V ⊆ S, we denote by MaxEC(V ) the
set consisting in all maximal end components U such that U ⊆ V .

Polynomial time algorithm for MDPs with basis condition. Given an 11/2-player game
graph G, let E be the set of end components. Consider a basis condition B = { B1, B2, . . . , Bk } ⊆
P(C), and let F be the union-closed condition generated from B. The set of winning end-
components are U = E ∩ { F ⊆ S | χ−1(F ) ∈ F }, and let Tend =

⋃
U∈U U . It follows from

Lemma 15 that the value function in G can be computed by computing the maximal probability
to reach Tend . Once the set Tend is computed, the value function for reachability objective in
11/2-player game graphs can be computed in polynomial time by linear-programming (see [13]). To
complete the proof we present a polynomial time algorithm to compute Tend .

Computing winning end components. The algorithm is as follows. Let B be the basis for the
winning condition and G be the 11/2-player game graph. Initialize B0 = B and repeat the following:

1. let Xi =
⋃

B∈Bi
χ−1(B);

2. partition the set Xi into maximal end components MaxEC(Xi);

3. remove an element B of Bi such that χ−1(B) is not wholly contained in a maximal end
component to obtain Bi+1;

until Bi = Bi−1. When Bi = Bi−1, let X = Xi, and every maximal end component of X is an union
of basis elements (all Y in X are members of basis elements, i.e., χ−1(Y ) ∈ B, and an basis element
not contained in any maximal end component of X is removed in step 3). Moreover, any maximal
end component of G which is an union of basis elements is a subset of an maximal end component
of X, since the algorithm preserves such sets. Hence we have X = Tend . The algorithm requires
|B| iterations and each iteration requires the decomposition of an 11/2-player game graph into the
set of maximal end components, which can be achieved in O(|S| · |E|) time (see [9]). Hence the
algorithm works in O(|B| · |S| · |E|) time. This completes the proof and yields the following result.
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Theorem 8 Given a 21/2-player game graph and a Müller objective Φ = Müller(F), where F is an
union-closed condition specified as a basis condtion defined by B or F is an upward-closed condition
specfied as a superset condition U , a state s and a rational r given in binary, it is coNP-complete
to decide whether 〈〈1〉〉val (Φ)(s) ≥ r.

5 An Improved Bound for Randomized Strategies

We now show that if a player plays randomized strategies, then the upper bound on memory for
optimal strategies can be improved. We first present the notions of an upward closed restriction of
a Zielonka tree. The number mU

F of such restrictions of the Zielonka tree will be in general lower
than the number mF of Zielonka trees, and we show that randomized strategies with memory of
size mU

F suffices for optimality.

Upward closed sets. A set F ⊆ P(C) is upward closed if for all F ∈ F and all F ⊆ F1 we have
F1 ∈ F , i.e., if a set F is in F , then all supersets F1 of F are in F as well.

Upward closed restriction of Zielonka tree. The upward closed restriction of a Zielonka tree
for a Müller winning condition F ⊆ P(C), denoted as ZU

F ,C , is obtained by making upward closed

conditions as leaves. Formally, we define ZU
F ,C inductively as follows:

1. if F is upward closed, then ZU
F ,C is leaf labeled F (i.e., it has no subtrees);

2. otherwise

(a) if C 6∈ F , then ZU
F ,C = ZU

F ,C
, where F = P(C) \ F .

(b) if C ∈ F , then the root of ZU
F ,C is labeled with C; and let C0, C1, . . . , Ck−1 be all the

maximal sets in { X 6∈ F | X ⊆ C }; then we attach to the root, as its subtrees, the
Zielonka upward closed restricted trees ZU

F ,C of F � Ci, i.e., ZU
F�Ci,Ci

, for i = 0, 1, . . . , k−
1.

The number mU
F for ZU

F ,C is the number defined as the number mF was defined for the tree ZF ,C .

We will prove randomized strategies of size mU
F suffices for optimality. To prove this result,

we first prove that randomized strategies of size mU
F suffices for almost-sure winning. The result

then follows from Lemma 6. To prove the result for almost-sure winning we take a closer look
at the proof of Theorem 3. The inductive proof characterizes that if existence of randomized
memoryless strategies can be proved for 21/2-player games with Müller winning conditions that
appear in the leaves of the Zielonka tree, then the inductive proof generalizes to give a bound as in
Theorem 3. Hence to prove an upper bound of size mU

F for almost-sure winning, it suffices to show
that randomized memoryless strategies suffices for upward closed Müller winning conditions. In [3]
it was shown that for all 21/2-player games randomized memoryless strategies suffices for almost-sure
winning for upward closed objectives (see Appendix for a proof). This gives us Theorem 9.

Theorem 9 For all Müller winning conditions F , the family of randomized finite-memory strate-
gies of size mU

F suffices for optimality on 21/2-player game graphs.

Remark. In general we have mU
F < mF . Consider for example F ⊆ P(C), where C =

{ c1, c2, . . . , ck }. For the Müller winning condition F = { C }. We have mU
F = 1, and mF = |C|.
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6 Conclusion

In this work we present optimal memory bounds for pure almost-sure, positive and optimal strate-
gies for 21/2-player games with Müller winning conditions. We also present improved memory
bounds for randomized strategies. Unlike the results of [10] our results do not extend to infinite
state games: for example, the results of [12] showed that even for 21/2-player pushdown games
optimal strategies need not exist, and for ε > 0 even ε-optimal strategies may require infinite
memory. For lower bound of randomized strategies the constructions of [10] do not work: in fact
for the family of games used for lower bounds in [10] randomized memoryless almost-sure winning
strategies exist. However, it is known that there exist Müller winning conditions F ⊆ P(C), such
that randomized almost-sure winning strategies may require memory |C|! [16]. However, whether a
matching lower bound of size mU

F can be proved in general, or whether the upper bound of mU
F can

be improved and a matching lower bound can be proved for randomized strategies with memory
remains open.
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[1] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state strategies. Trans-
actions of the AMS, 138:295–311, 1969.

[2] K. Chatterjee. Concurrent games with tail objectives. In CSL’06, Springer.

[3] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. Trading memory for randomness. In QEST’04
IEEE Computer Society Press, 2004.

[4] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of stochastic Rabin and
Streett games. In ICALP’05 vol. 3580 of LNCS, pages 878–890. Springer.
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Appendix

Theorem 10 ([3]) The family of randomized memoryless strategies suffices for almost-sure win-
ning with respect to upward closed objectives on 21/2-player game graphs.

Proof. Consider a 21/2-player game graph G and the game (G,C, χ,F) with an upward closed
objective Φ = Müller(F) for player 1, i.e., F is upward closed. Let W1 = 〈〈1〉〉almost (Φ) be the
set of almost-sure winning states for player 1 in G. We have S \ W1 = 〈〈2〉〉pos (Φ) and hence any
almost-sure winning strategy for player 1 ensures that from W1 the set S \ W1 is not reached with
positive probability. Hence we only require to consider strategies σ for player 1 such that for all
w ∈ W ∗

1 and s ∈ W1 we have Supp(σ(w · s)) ⊆ W1. Consider a randomized memoryless strategy
σ for player 1 such that for a state s ∈ W1 it chooses uniformly at random all successors in W1.
Observe that for a state s ∈ (S2 ∪ S©) ∩ W1 we have E(s) ⊆ W1; otherwise s would not have
been in W1. Consider the MDP Gσ � W1. Since it is a player-2 MDP with the Müller objective
Φ and randomized memoryless optimal strategies exist in MDPs [3], we fix a memoryless counter-
optimal strategy π for player 2 in Gσ � W1. Now consider the player-1 MDP Gπ � W1. Consider a
memoryless strategy σ′ in Gπ � W1. We first present an observation: since the strategy σ chooses
all successors in W1 uniformly at random and for all s ∈ W1∩S1 we have Supp(σ′(s)) ⊆ Supp(σ(s)),
it follows that for every closed recurrent set U ′ in the Markov chain Gσ′,π � W1 there is a closed
recurrent set U in the Markov chain Gσ,π � W1 with U ′ ⊆ U . We now prove that σ is an almost-sure
winning strategy by showing that all recurrent set of states U in Gσ,π � W1 is winning for player 1,
i.e., χ(U) ∈ F . Assume towards contradiction, there is a closed recurrent set U in Gσ,π � W1 with
χ(U) 6∈ F . Consider the player-1 MDP Gπ � W1. Since randomized memoryless optimal strategies
exist in MDPs [3], we fix a memoryless counter-optimal strategy σ′ for player 1. By observation
for any closed recurrent set U ′ in Gσ′,π such that U ′ ∩ U 6= ∅ we have U ′ ⊆ U ; and moreover,
χ(U ′) ⊆ χ(U) and χ(U ′) 6∈ F , since F is upward closed and χ(U) 6∈ F . It then follows that player 2
wins with probability 1 in from a non-empty set U ′ (a closed recurrent set U ′ ⊆ U) of states in the
Markov chain Gσ′,π. Since π is a fixed strategy for player 2 and the strategy σ′ is counter-optimal
for player 1, this contradicts that U ′ ⊆ U ⊆ 〈〈1〉〉almost (Φ). It follows that every closed recurrent set
U in Gσ,π � W1 is winning for player 1 and the result follows.
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